Abstract

Mobile calling applications are gaining pace with the advent of faster data access. All these applications require connectivity to the internet or assistance from the third party. If the internet connection is slow then the call may get disconnected or clarity of voice will not be there. This project provides a solution to establish an intra-network communication. As in campus or in the company the students can communicate using their mobile phones with each other without the internet connection through VOIP (voice over internet protocol) so that all people can access facilities, like extension phone even if the internet is blocked. This will enable free calling across the campus and also enable futuristic value added education services. The considered functions are implemented as an application in a smartphone using an Android operating system. A user can install the proposed application in advance and make use of it the possibilities of examination of the new digital.
1. INTRODUCTION

Smart phones are called as mobile phones were they operate on more than one features and they can do better than the other mobiles. They are small hand held telephones with colourful screens, multiple sensor technologies, and multiple networks capable of exchanging data. Smart phone communication has become faster they can send and receive the data much faster than older phones. Today smart phones are used in these areas, the emergence of phones with wireless internet connections and the development of the ad hoc networking systems, as well as the ability to quickly deploy battery-based mesh networking equipment, will allow smartphones to have considerable utility in future disasters. It has been suggested that peer to peer networks comprised of cell Phones could be used to allow (possibly limited) communication in such an event. Thus the expectation is that the communication issues can be addressed by these new technologies, and in particular complete the use of a combination of wireless networks found on modern smartphones.

1.1 Background

Android is a Linux-based mobile phone operating system is developed by Google. Android is unique because Google is actively developing the platform, but giving it away for free to hardware manufacturers and phone carriers who want to use Android on their devices. Android is an open source operating system for mobile devices that includes middleware and key application, and uses a modified version of the Linux kernel.

2. LITERATURE SURVEY

Recently there have also been a number of applications for smartphones targeted specifically at emergency response. The most famous of these is the “Fire Department” app from the Ramon Valley Fire Protection District. This application provides users with information about recent emergency events on a map. It also can be used to find the location of an automated defibrillator. This application requires that the phone be connected to the internet in order to operate properly. Such an application could be rebuilt using our approach relatively easily, allowing users to share data on recent events in an ad-hoc fashion. Also of significant interest is the SAHANA foundation project, which aims to provide a set of modular, web-based disaster management.

Applications developed as part of SAHANA include a Missing Person Registry, an Organization Registry, Request and Pledge Management System, Shelter Registry, Inventory Management, Situation Awareness, and Volunteer co-ordination. SAHANA also includes tools Situation for synchronization between multiple instance allowing for responders or district Situation Awareness, and Volunteer coordination. SAHANA also includes tools for synchronization between multiple instances, allowing for responders or district offices to capture data on victims in the field and exchange the data with the other field offices, headquarters or responders. SAHANA also includes synchronization features to synchronize multiple instances. Because SAHANA is a web-based framework, it has the problem of relying on communication to the centralized web-server, and thus cannot...
take advantage of mobile nodes making disconnected operations. Furthermore, users do not have access to the data in the SAHANA system when they are offline. Furthermore, we note that the synchronization framework in SAHANA relies entirely on modification timestamps and is thus subject to the problem of unsynchronized. Clocks on mobile devices leading to incorrect conflict recognition. Furthermore, the applications in SAHANA cannot be changed by users of the software, and are thus not easy to adapt to meet the previously unknown needs of users when disaster strikes.

3. SYSTEM ARCHITECTURE

Architecture is defined as the art of designing structures and creating buildings and it is also called where components of a computer system are integrated and organized.

The Architecture

The essential infrastructure contains a Tracker Server and a video server. In the simplest case, only a solo instance of each module exists in the system. To increase the reliability and the performance of the system, one could always use further, terminated instances of each module. The video server needs to register his content at the tracker server to be able to stream video content. In the proposed system, each video outcomes in an own dissemination swarm, i.e. only the peers watching the same video exchange video data. The process of joining of the swarm, that is watching and redistributing a chosen video, can be described as follows upon registration at the tracker server, each peer receives a unique identifier (Peer ID or IP address).

![Figure 1: Architecture of the system](image-url)
4. IMPLEMENTATION

Implementation of software refers to the final installation of the package in its real environment to the satisfaction of the intended users and the operation of the system. The people are not sure that the software is meant to make their job easier.

- The active user must be aware of the benefits of using the system
- Their confidence in the software built up.
- Proper guidance is impaired to the users so that he is comfortable in using the application.

Before going ahead and viewing the system, the user must know that for viewing the results, the server program should be running in the server. If the Server object is not running on the server, the actual processes will not take place. Benefits expected from the propose system it is essential for the people who will be involve to be confident of their roles in the new system. The systems become more complex the needs for education and training is more and more important. Education is complementary to training. It brings life to formal training by explaining the background to the resources for them. Education involves creating the right atmosphere and motivating user’s staff. Education information can make training for interesting and more understanding.

Training on the Application Software

After providing the necessary basic training on the computer awareness user has to be train on the new application software these will give the underline philosophy of the use of the new system such as screen flow, screen design, type of help on the screen, type of error

Operational Documentation

Once the implementation is decided, it is essential that the users of the systems is made familiar and comfortable with the environment documentation providing the whole
operation of the systems is being developed useful tips and guidance is given inside the application itself to the user. The system is developed user friendly so that the user can work the system from the tips given in the application itself. The need for the system maintenance is to make adaptable to the change in the There may be social technical and other environment changes in the system which is being implemented. Software product enchantment may evolved providing new function capabilities, improving user displays and mode of interaction, upgrading the performance characteristics of the system’s only through proper system maintenance procedures, the system can be adopted to cope up with these changes. Software maintenance of course, far more than “finding mistakes”.

5. RESULTS

![Figure 3: Selection of the IP of the receiver](image1)

![Figure 4: Text Message Interface (Receiver)](image2)
Figure 5: Selection of the IP of the receiver

Figure 6: Text message interface (Sender)

Figure 7: Video option at sender
6. REFERENCES

