Design and Development of Deterministic Fast Ethernet Using FPGA

Abstract
During the last few decades for the packet transmission and reception, fast Ethernet has been the most accepted and preferred protocol. Currently, fast Ethernet technology is being used for the transmission and reception of packets in wired channel communication. In conventional CSMA/CD methodology, the loss in packet is quite visible. This paper describes about the development of a new technique for reliable packet transmission. This technique is developed to achieve zero packet loss. This technique can be applied for real time applications. The approach is deterministic, and is based on hard time scheduling of incoming packets and transmit with the fixed delay to ensure that there is no collision between the packets. In this technique a priority based transmission and reception of packets takes place. Priority is based upon the time period. The design strategy uses the Switched Ethernet technology with full duplex communication. The transmission of packets is performed using the logical link and bandwidth allocation gap concept. The IP core for the proposed approach has been developed using the Xilinx tool and is implemented using Xilinx SP605 evaluation board, which is connected to an end system for controlled transmission and reception at 100Mbps.
1. Introduction

Ethernet became the prominent good performance standard of Local Area Network (LAN) for micros, small computers, PCs etc. in the eighties. The technological advancement of Ethernet was produced by DEC, Xerox and Intel. Point by point consecutive links and telephone modems became almost obsolete because of the evolution of Ethernet. The Medium Access Control (MAC) layers and the Ethernet Physical (PHY) layers are defined by the standard IEEE 802 family. Their relationships to Internet Protocol (IP) are also very well defined by this IEEE 802 standard family. IEEE 802.1 also describes the whole architecture of the Ethernet, its bridging and the functions of network management of the Ethernet. The logical link control for Ethernet is defined by IEEE 802.2. However the variations of PHY layer and MAC layer technology for example switched Ethernet and wireless Ethernet are defined by 802.3 through 802.17.

The 802.3u Fast Ethernet was developed in 1995. This is a 100Base-T auto-negotiable Ethernet. The process of auto-negotiation is defined as the two nodes which communicate their respective properties viz. transmission speed, mode of communication i.e. half or full duplex, provision for the pause frames etc. and this is because of to select the maximum common properties for both ends of the link. The process of auto negotiation takes place at the initialization of link. This is also backward compatible. It means that the link will still work even if the one node of the link does not support auto negotiation. However it is also quite possible that the two nodes which support auto-negotiation, but still there is no common property does exist between them. In that particular situation, the link establishment will not take place. IEEE 802.3 doesn’t specify the maximum number of link code words sent by each node but each node that supports auto negotiation must be proficient enough of transmitting an auto-negotiation base page. The IEEE 802.3 frame fields are shown as:

<table>
<thead>
<tr>
<th>Preamble</th>
<th>SOF</th>
<th>Destination Address</th>
<th>Source Address</th>
<th>Length</th>
<th>802.2 Header & Data</th>
<th>FCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Bytes</td>
<td>1 Byte</td>
<td>6 Bytes</td>
<td>6 Bytes</td>
<td>2 Bytes</td>
<td>46-1500 Bytes</td>
<td>4 Bytes</td>
</tr>
</tbody>
</table>

![Figure 1: Different frame fields of IEEE 802.3](image)

2. Design Approach

2.1 Hard Time Scheduling

For achieving the determinism in context of Ethernet following condition are applied:-

i. Hard time scheduling

ii. Multi time scheduler of order 2^n ms

iii. Packet transmission based on priority

iv. Real time communication

Hard time scheduling is generally used in hard real time communication. It is grounded upon rate monotonic concept. It assigns priority according to the time period. Priorities allotted to processes are inversely proportional to the time period. Therefore a message with the shortest period is
allotted the highest priority. It executes a job with the shortest period first. It uses fixed priority algorithm.

In this project Determinism in Ethernet was achieved by using Hard Time Scheduling. Hard Time Scheduling is done by dividing the time in fixed interval and by assigning the fixed time period or bandwidth to each Logical Link (LL). Allocation of bandwidth is done in between 1 ms to 128 ms.

The dimensions is determined by equation 1.

\[\text{Bandwidth allocation} = 2^k \quad \text{...(1)} \]

Where, \(k = \text{an integer} = 0 \) to 7.

The bandwidth allocation for each LL is allotted by the system integrator grounded on the requirements of the application and is put in storage in the configuration tables for the end system or switch.

Here base time is set as 1ms i.e. time is divided into 1ms time interval and goes up to 128 ms and it repeats after every 128 ms. Here 8 packets namely T1, T2, T3, T4, T5, T6, T7, T8 are taken and respective time periods 1ms, 2ms, 4ms, 8ms, 16ms, 32ms, 64ms, 128ms are assigned. T1 has smallest period of 1ms which repeats after every 1ms and has highest priority. T2 repeats after every 2ms and has second highest priority. Similarly, T3, T4, T5, T6, T7, T8 repeats after every 4ms, 8ms, 16ms, 32ms, 64ms, 128ms respectively.

Here priority of transmission is inversely proportional to time period. If time period is less then priority is high and if time period is more, then priority is low. Hence the packet with the highest period has lowest priority, thus T8 having highest period will have lowest priority. This concept is called hard time scheduling which is shown in figure 2 below.

![Hard time scheduling concept](image)

Above figure 2 shows the duration of time only up to 16ms which can be extended up to 128ms. For the first base time of 1ms only T1 packet will transmit. In the next 1ms time interval both T1 and T2 will transmit. At 3\text{rd} 1ms time interval again only T1 will transmit. At 4\text{th} 1ms time interval T1, T2 and T3 are transmitted. At 5\text{th} 1ms time interval only T1 will transmit. At 6\text{th} 1ms time interval again T1 and T2 will transmit. At 7\text{th} 1ms time interval again only T1 will transmit. At 8\text{th} 1ms time interval T1, T2, T3 and T4 will transmit and so on up to 128ms.
2.2 Frame structure

Frame structure consists of Preamble, Protocol, Payload, Error control and Post amble. Preamble is the alternating array of ones and zeros that conveys the information about the frame is coming to the receiving stations. At the last of preamble, the ES which transmits the packet sends out the Start Frame Delimiter (SFD) to disrupt this array and just after, the SFD provides the signal for the beginning of the actual frame. The Ethernet Protocol consists of MAC destination address, MAC source address and Ether Type. Ethernet frame start with the MAC destination address where the Logical link identifier is encoded by the Deterministic Ethernet in the latest couple of bytes. The MAC source address encodes the information viz. different IDs like equipment, network and interface. What type of protocol is conveyed in the Ethernet frame, to specify this Ether Type field is cast-off. In Deterministic Ethernet, this two byte field has always the value 0x0800 meaning that the Version 4 (IPv4) Internet Protocol. Ethernet payload consists of the IP header, the UDP header and the Deterministic Ethernet payload. The UDP and IP header are of 8 byte and 20 bytes. Meanwhile the Ethernet frame lies in 64 to 1518 bytes, the Deterministic Ethernet payload must lies in 18 to 1472 bytes. This can be calculated simply by deducting the protocol overhead (6 + 6 + 2 +20 + 8 + 4 = 46) from the maximum and minimum frame sizes. Frame Check Sequence (FCS) is four bytes long. The Cyclic Redundancy Checksum (CRC) algorithm is used to compute and compare a checksum over the entire frame by the end systems. In case the checksums are not same the receiving End System (ES) rejects the frame. Ethernet specifies Inter Frame Gap (IFG), which is a smallest idle time between the packet transmissions. In Deterministic Ethernet this is not strictly required. Moreover, for the sake of convenience, the IFG also applies to Deterministic Ethernet. IFG is defined by 96 bit times. Then on a 100 Mega bit per second network, the IFG idle time is 960 Nano seconds.
2.3 Block Diagram of the Transmitter & Receiver

Communication port provides the data which requires deterministic communication between the systems. Typically this data is of critical importance and has well defined deadlines to be met. Config Memory provides the information about length of the data, VLAN id, Port number, and the address where data is stored.

![Block diagram of the transmitter](image1)

Figure 4: Block diagram of the transmitter

Data memory provides memory for the data payload to be inserted in the Ethernet packet in the form of Block RAMs. LL Scheduler is used to trigger traffic generator and provide data transmission after some predefined time, when it is enabled by the LL Scheduler Handler. Ethernet Packet Handler is used to provide Ethernet header, IP header and the UDP header to the traffic generator, when it is enabled and the required header information is provided by the LL Scheduler Handler. In the transmission side TEMAC block provides the functionality of a typical MAC transmitter as defined in the IEEE 802.3u standard for supporting a data rate of 100Mbps. The different function involves start of frame, accepting the Ethernet packets, adding the preamble, FCS and padding bytes to ensure minimum frame length requirements, followed by Ethernet frames transmission using the PHY chip. The transmitter MAC is connected to PHY chip using the Media Independent Interface (MII).

![Block diagram of the receiver](image2)

Figure 5: Block diagram of the receiver
The PHY chip is used to communicate Ethernet frames at 100Mbps. MII interface is used to communicate between the chip and the MAC transmitter. Receiver TEMAC provides the functionality of a typical MAC receiver as defined in the IEEE 802.3u standard. It accepts Ethernet frame data from the PHY chip using the MII interface, removes the preamble, SFD, padding bytes and FCS. Packet FIFO stores the Ethernet data packets and forwards it to the Error Handler when control signal is given by the Data router. Error handler checks for any errors using the CRC and the minimum frame size. Data Router route the data to its destination address. It accesses the configuration parameters from the config memory which is provided by the users. It provides the information to the data memory and the data memory send the data to its destination communication port.

2.3 Scheduler

The shaping of the stream of Traffic in deterministic Ethernet is achieved by the Logical link (LL) scheduler. It combines all the frames coming from the transmitter side Logical links of an ES on the physical link. LL Scheduler is used to trigger the traffic generator and provide data transmission after some predefined time, when it is enabled by the LL Scheduler Handler. Each Logical link is similar to a stream of frames and with several Logical links there are several streams of frames that have to be combined into a single stream of frames. The multiplexing is controlled by the well-defined bandwidth allocation for individual ES which is exclusive to individual Logical links. The well-defined bandwidth allocation is a time period restricting the Logical link's bandwidth by describing the least possible gap time between two successive frames. The well-defined bandwidth allocation rate rests in the range 1ms to 128ms and essentially a power of 2 as given by the equation 1. There are different independent blocks in the LL scheduler. They are 1ms Base timer, Config Handler, Data handler, LL scheduler handler, hard time scheduler. 1ms base timer divides the time in 1ms time interval. Config Handler takes care of config memory block. Data handler handles the data memory block. LL scheduler handler handles the LL scheduler. Hard time scheduler provides the hard time scheduling of LL based on the predefined time.

![Figure 6: Logical Link Scheduler](image-url)
2.4 Flow charts

Flow chart for Transmission of data in the transmitter is shown in above figure 7. The config memory stores Source address, destination address, length of the packet and the address for the data corresponding to that configuration. Data memory stores the data for each configuration. The sequences of operation are as follows

1. The scheduler reads the data from the config memory and performs the operation accordingly.
2. The data such as source address, destination address, and length of data, corresponding address and the scheduler ID is extracted from the configuration.
3. The scheduling ID is verified with the schedule configuration.
4. If the ID should be scheduled the trigger for the packet generation is generated. Else repeat the step from 1 to 4.
5. The header is generated based on the configuration and the corresponding data from the data memory is extracted.
6. The final packet is generated with MAC, IP, UDP and data is sent to TEMAC.
7. The final packet along with preamble and CRC is sent to Ethernet PHY.

![Flow chart for Receiver](image)

Figure 8: Flow chart for Receiver

Flow chart for reception of data in the receiver is shown in above figure 8. The sequence of operation of receiver is as follows

1. After receiving the Ethernet packets from the PHY, packet is then sent to TEMAC.
2. TEMAC removes the overheads and stores the packets in the packet FIFO.
3. Integrity of the packet is then has to be verified. For example length of the packet, CRC etc. has to be verified.
4. If yes then send packets to its destination address according to the user configuration which is provided by the configuration memory and stop the reception process.
5. If the CRC does not match with the received CRC, which is sent by the transmitter then the corresponding packet is discarded and the process is stopped.

3. Test Results And Discussions
This section describes the simulation and implementation results of the design. Simulation is done by using the ISIM (P.68d) which is a tool in the ISE. Implementation of the design is done by using Wireshark, which is an open source packet analyser.

3.1 Simulation Results
Figure 9 shows the simulation result of 1ms fixed delay packet repeating in every 1ms. Data length is 100 bytes for every packet.

![Simulation result of 1ms fixed delay packet](image)

Figure 9: Simulation result of 1ms fixed delay packet
Figure 10: Simulation result of multi time scheduled packets of 1ms, 2ms, 4ms and 8ms

Above figure 10 shows the simulation result of hard time scheduling of 1ms, 2ms, 4ms and 8ms packets. Packets marked in red shows the 1st, 3rd, 5th and 7th ms time interval which contains 5 packets of 1ms time division. Packets marked in violet shows the 2nd and 6th ms time interval which contains both 1ms packets and 2nd ms packets. Hence total no. of packets in this is 9. Packets marked in pink shows the 4th ms time interval which contains the packets of 1st ms, 2nd ms and 4th ms time division. Hence total no. of packets in this time interval is 13. Packets marked in blue shows the 8th ms time interval which contains packets of 1ms, 2nd ms, 4th ms and also 8th ms time division. Hence total no. of packets in this time interval is 16. 1st ms time division contains five packets of length 300, 250, 200, 150 and 100 bytes. 2nd ms contains four packets of length 500, 450, 400 and 350 bytes. 4th ms contains four packets of length 700, 650,600 and 550. 8th ms have three packets of length 850,800 and 750 bytes.

3.2 Implementation Results

Figure 10 and 11 shown below shows the implementation result of multi time scheduling of 1ms, 2ms, 4ms and 8ms packets. Packets marked in red are 1ms packets. Packets marked in violet are 2ms packets. Packets marked in pink are 4ms packets. Packets marked in orange are 8ms packets.
Figure 11: Implementation result of multi time scheduling of 1ms, 2ms, 4ms and 8ms packets (1).
Sneha Bharti, Pradeep Kumar B, Dr. C.M. Ananda, Shanthi P:: Design and Development of Deterministic Fast Ethernet Using FPGA

Figure 12: Implementation result of multi time scheduling of 1ms, 2ms, 4ms and 8ms packets (2)
4. Conclusion

It can be seen from the test results that implementation for the multi-scheduler based Deterministic Ethernet has been successfully simulated, implemented and tested. This new technique can be adopted for many real time applications specifically for packet transmission in hard real time communications like avionics and marine communication. A complete Ethernet packet with the MAC header, IP header, UDP header and the data payload has been created using Xilinx tools and the results have been simulated and implemented on FPGA, for scheduling the Ethernet packets at a predetermined time interval for real time deterministic communication.

References